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Abstract

Our investigation on the full finite-element analysis has
been extended to the precise discussions on the vector-modal
behavior on uniform rectangular waveguides, and has found
some specific vector-modal behavior in the fundamental mode of

the pseudo-longitudinal, flexural and tortional waves. As an

example, we show here for the fust time that the modal behavior

of the fundamental flexural mode on a 3D rectanguhw waveguide

can be dkcussed well by the behavior of the fundamental Lamb

mode on the correspondingly-approximated 2D elastic-plate

waveguide. Tlis new understanding is then applied to

develop a novel 2D Lamb-mode-waveguide model for analyzing

the transmission characteristics of double-step discontinuities (or

a resonator cavity) on 3D acoustic rectangular waveguide.

1. INTRODUCTION

In proportion as acoustic devices are highly developed,

the ground of design approaches must shift from two-

dimensional (2D) standpoint to 3D one, and also from a simple

analytical method to a full analytical method. Indeed, there

are several interesting numerical models for 3D acoustic

waveguides and devices. Although there are several work [l-

6] on 3LYwaveguide characterimtion, these approaches are

actually complicated and it is difficult to see through the results

physically for some of them, As for acoustic-device study

[7, 8], they assume that such devices are to be periodic infinitely

in one or two dmections. Such an assumption is justified only

when the number of the unit cell is of the order of several

hundreds to a few thousands. For such periodic structures,

the vector-field behavior on the entire structure can be solved

from the knowledge of that only in one cell, introducing the

phase-shXtiug condition that can not be au actual boundrny

condhion for pmctical 3D structures.

OrI the other hand, highly developed functional devices

are often installed on practical 3D acoustic waveguides with, for

example, a rectangular cross section or a circular one, and they

will sometimes include only a few unit cells or simple

discontinuities like single-step and double-step discontiiuities.

However, to our knowledge, step-dkcontinuity problems on,

for example, acoustic rectangular waveguides, have not been

dkcussed well by the full-wave analysis. For such

investigation, we should fust understand the modal behavior of

vector field on an uniform 3D acoustic waveguides in full detail.

Thus, the central focus of this paper is summarized into the

following three items:

(1) To explain our new understanding on the modal-field

behavior on 3D rectangular waveguides,

(2) To analyze accurately the transmission characteristics

of the double-step discontinuities (or a resonator cavity) on 3D

rectangular waveguide by the vector FEM, and

(3) To develop a novel 2D model for analyzing the

transmission characteristics for 3D model mentioned in (2)

above.

2. MODAL-FIELD BEHAVIOR ON ACOIJSTIC

3D RECTANGULAR WAVEGUIDES

Since the modal fields on acoustic rectangular

waveguides are very complicated due to a hybrid behavior of

both the volume-like and surface-wave-like waves, it is difficult,

at the present time, to unify the classification of lhe modes and

their naming. However, it is true that the characteristic modes

on an acoustic rectangular waveguide, of which the cross

section is shown in Fig. 1, can be classified into the following

three groups; the pseudo-longitudinal modes, the flexural modes

and the torsional modes. These mode groups are

characterized by the boundary conditions on both the yz plane at

x = O (“Y-plate”) and the xz plane at y = O (“X-plane”). As

an example, the flexural-mode groups has the Y and X planes as

the symmetric plane and the anti-symmetric plane, respectively,
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Fig. 1. Cross section of the acoustic rectangular waveguide.
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and vice versa. Then, we fust explain our new understanding

on the modal-field behavior of, as an example, the fundamental

flexural mode on the acoustic rectangular waveguide from the

viewpoints of both the dispersion relations and the particle-

displacement-vector plots.

In our accurate FEM calculations, an aluminum (the

density p = 2.69 [g/cm3]) is assumed as the elastic material, and

the relative value db is varied. Fig. 2 shows the dispersion

curves of the normalized frequency cnbhcv, versus the

normalized phase constant ~bh, for different db values. This

figure shows the dispersion relations in the frequency range, in

which only the fundamental mode can propagate, because most

of devices wiIl be designed in such a frequency range. On the

other hand, the Y plane is now the symmetric one, so that we

tend to consider the SH wave as the existing mode when the

width a is increased sufficiently. In Fig. 2, the thick-solid

curve indicates the dispersion curve for the SH wave when e

co, while the thickness b is kept constant. This SH-wave

curve is actually a slant-straighten line with some finite angle to

the frequency axis, while the curves for the flexural mode rise

with the right angle to the frequency axis at the origin. Thus,

the modal behavior of the fimdamental flexural mode on the

rectangular waveguide is never tending to that of the SH wave

on the elastic plate with the thickness b (LPCU), even if the a

value is increased sufficiently. This tendency is more

clarified from the plots of the particle displacements, u,, Uy and

Uz, shown in Fig. 3, which shows the relative displacements

observed on the x axis between da= O and 1.0. This plots

exhibit that the leading-displacement component u, is indeed

quite uniform along the x axis, while the component L+ is

negligibly zero as that of the SH wave in a uniform plate of the

thickness b is so, but that the UZ component is also observed

significantly at around the stress-free boundary at the side

surfaces. From further careful investigation on these results

and also the displacement-vector plots (which are omitted here

and will be presented at the talk), the modal behavior
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of the

lexural mode seems to quite resemble to that of the Lamb wave

on the elastic plate with the thickness a (b+~). So, we have

replotted Fig. 2 by replacing a normalization constant b in both

axes with a as shown in Fig. 4. In this case, the dispersion

curves of the flexural mode for the different db values fall

approximately on one curve shown broken in Fig. 4, while the

dispersion ctuwe for the anti-symmetric Lamb wave on the

elastic plate with the thickness a (b+~) is shown by the thick-

solid curve. Thus, both curves seem to be ahnost coincided

as long as the frequency range shown there, and we can

conclude that the modal-field behavior of the fundamental

flexural mode on the acoustic rectangular waveguides is

understood from that of the Lamb wave mentioned above.

This result is just our new insight for the item (1) mentioned in

Introduction.
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Fig. 2. Dispersion curves of the normalized frequency mbhcv,
versus the normalized phase constant ~bhc, for
different db values.
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Intensity distributions of the particle displacements UX
and UZalong the x axis for afb =1.0 and cmhcv, = 0.1.
Both results agree well with the distributions of the
particle displacement of the Lamb wave when b+@.
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Dispersion curves of the normalized frequency adzv,
versus the normalized phase constant &/n, for
different aib values.
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Fig. 5. Sketch of the double-step discontinuity on the acoustic rectangular
wavemride. We assume that the fundamentrd mode imtin~es far.-
from he front side.

CHARACTERISTICS OF THE DOUBLE-STEP

DISCONTINUITIES

We next dkcuss the discontinuity problem on the

acoustic rectangulm waveguide on the basis of the knowledge

obtained in the previous section. Fig. 5 shows the sketch of

the double-step discontinuity, for which the fundamental

flexural mode impinges far from the front end. The accurate

FEM-calculation results for the reflection and transmission

characteristics are shown in Fig. 6(a) and Fig. 6(b), respectively,

for the different a/b values. The other dimensional parameters

are shown in the figures. The tilck-solid curve indicates the

results for the double-step discontinuity in uniform plates in the

.x dwection (a+ ~ in Fig. 5), but assuming the SH-wave

incidence. Thus, such a simple 2D-discontinuity model is

completely ineffective to calculate the reflection and transmission

coefficients of the 3D dkcondnuity for the flexural mode.
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This result is just our solution for the item (2) mentioned in

Introduction. Then, we have a question here: Should we

always use a full-numerical method like FEM to analyze3D-

dkcontinuity problems?

As mentioned previously, however, the modal-field

behavior of the fundamental flexural mode on the acoustic

rectangular waveguides is understood from that of the Lamb

wave existing on the elastic plate with the thickness a (b-~).

Since the condition of b-+~ is equalized with the symmetric

plane placed parallel to the X.Z plane at any y position, we may

replace both the top and bottom stress-free surfaces in each

waveguide with the symmetric planes. As a result the

problem of Fig. 5 with the fundamental flexural-mode incidence

is approximated by a 2D-dkcontinuity problem of the Lamb-

wave incidence mentiom d above. The results obtained by

such an approximation arc shown by the dot-broken curves in
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Fig. 6. The reflection (a) and the ‘~ansmission (b) coefficients versus the normalized frequency tihcv,.
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Fig.7. Comptison oftiereflection (a)adtie _smission (b)coefflcien@ be@een
3D FEM and the approximated 2D-discontinuity model.

Fig. 7, and actually show a good agreement with the accurate

FEM results. Such an approximated 2D-discontinuity model

can be, of course, solved by not the numerical method like FEM,

but the analytical method, so that the calculation process is

surprisingly simplified. For such an analytical approach, we

can also apply the well-established microwave-circuit analysis

and the equivalent network approach. These will be

presented at the talk. As a resul~ we don’t know, to our

knowledge, such a successful investigation mentioned here on

the discontinuity problems of the 3D acoustic rectangular

waveguides, and, in this sense, the results and discussions are

quite new, and this is just our solution to the item (3) mentioned

in Introduction.

4. CONCLUSION

Since there is no systematic investigation on the modal-

field behaviors, we have fist tried to understand systematically

the modal behavior, especially for the fundamental flexural

mode, in the way similar to the electromagnetic-field theory, and

we have explained it only by that of the Lamb wave, at leas~ for

the structures discussed here and in the frequency range.

Then these results have been applied to develop a simple 2D-

structural model for solving an actual 3D discontinuity,

Further detail of this approach and application to other acoustic-

device analysis will be presented at the talk.
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