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Abstract

Our investigation on the full finite-element analysis has
been extended to the precise discussions on the vector-modal
behavior on uniform rectangular waveguides, and has found
some specific vector-modal behavior in the fundamental mode of
the pseudo-longitudinal, fiexural and tortional waves.  As an
example, we show here for the first time that the modal behavior
of the fundamental flexural mode on a 3D rectangular waveguide
can be discussed well by the behavior of the fundamental Lamb
mode on the correspondingly-approximated 2D elastic-plate
waveguide. This new understanding is then applied to
develop a novel 2D Lamb-mode-waveguide model for analyzing
the transmission characteristics of double-step discontinuities (or
a resonator cavity) on 3D acoustic rectangular waveguide.

1. INTRODUCTION

In proportion as acoustic devices are highly developed,
the ground of design approaches must shift from two-
dimensional (2D) standpoint to 3D one, and also from a simple
analytical method to a full analytical method.  Indeed, there
are several interesting numerical models for 3D acoustic
waveguides and devices.  Although there are several work [1-
6] on 3D-waveguide characterization, these approaches are
actually complicated and it is difficult to see through the results
physically for some of them.  As for acoustic-device study
[7,8], they assume that such devices are to be periodic infinitely
in one or two directions.  Such an assumption is justified only
when the number of the unit cell is of the order of several
hundreds to a few thousands.  For such periodic structures,
the vector-field behavior on the entire structure can be solved
from the knowledge of that only in one cell, introducing the
phase-shifting condition that can not be an actual boundary
condition for practical 3D structures.

On the other hand, highly developed functional devices
are often installed on practical 3D acoustic waveguides with, for
example, a rectangular cross section or a circular one, and they
will sometimes include only a few unit cells or simple
discontinuities like single-step and double-step discontinuities.
However, to our knowledge, step-discontinuity problems on,
for example, acoustic rectangular waveguides, have not been
discussed well by the full-wave analysis. For such
investigation, we should first understand the modal behavior of
vector field on an uniform 3D acoustic waveguides in full detail.
Thus, the central focus of this paper is summarized into the
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following three items:

¢)) To explain our new understanding on the modal-field
behavior on 3D rectangular waveguides,

@) To analyze accurately the transmission characteristics
of the double-step discontinuities (or a resonator cavity) on 3D
rectangular waveguide by the vector FEM, and

3 To develop a novel 2D model for analyzing the
transmission characteristics for 3D model mentioned in (2)
above.

2. MODAL-FIELD BEHAVIOR ON ACOUSTIC
3D RECTANGULAR WAVEGUIDES

Since the modal fields on acoustic rectangular
waveguides are very complicated due to a hybrid behavior of
both the volume-like and surface-wave-like waves, it is difficult,
at the present time, to unify the classification of the modes and
their naming.  However, it is true that the characteristic modes
on an acoustic rectangular waveguide, of which the cross
section is shown in Fig. 1, can be classified into the following
three groups; the pseudo-longitudinal modes, the flexural modes
and the torsional modes. These mode groups are
characterized by the boundary conditions on both the yz plane at
x = 0 (“Y-plane”) and the xz plane at y = 0 (“X-plane™).  As
an example, the flexural-mode groups has the Y and X planes as
the symmetric plane and the anti-symmetric plane, respectively,
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Fig. 1. Cross section of the acoustic rectangular waveguide.
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and vice versa.  Then, we first explain our new understanding
on the modal-field behavior of, as an example, the fundamental
flexural mode on the acoustic rectangular waveguide from the
viewpoints of both the dispersion relations and the particle-
displacement-vector plots.

In our accurate FEM calculations, an aluminum (the
density p= 2.69 [g/cm’]) is assumed as the elastic material, and
the relative value a/b is varied.  Fig. 2 shows the dispersion
curves of the normalized frequency wb/mv, versus the
normalized phase constant Sb/r, for different a/b values.  This
figure shows the dispersion relations in the frequency range, in
which only the fundamental mode can propagate, because most
of devices will be designed in such a frequency range. ~ On the
other hand, the Y plane is now the symmetric one, so that we
tend to consider the SH wave as the existing mode when the
width a is increased sufficiently. In Fig. 2, the thick-solid
curve indicates the dispersion curve for the SH wave when a—
oo, while the thickness b is kept constant.  This SH-wave
curve is actually a slant-straighten line with some finite angle to
the frequency axis, while the curves for the flexural mode rise
with the right angle to the frequency axis at the origin.  Thus,
the modal behavior of the fundamental flexural mode on the
rectangular waveguide is never tending to that of the SH wave
on the elastic plate with the thickness b (a—>), even if the a
value is increased sufficiently. This tendency is more
clarified from the plots of the particle displacements, «,, #, and
u,, shown in Fig. 3, which shows the relative displacements
observed on the x axis between x/a = 0 and 1.0.  This plots
exhibit that the leading-displacement component u, is indeed
quite uniform along the x axis, while the component u, is
negligibly zero as that of the SH wave in a uniform plate of the
thickness b is so, but that the #, component is also observed
significantly at around the stress-free boundary at the side
surfaces.  From further careful investigation on these results
and also the displacement-vector plots (which are omitted here
and will be presented at the talk), the modal behavior of the

| —

ligy|

alb— 0
(antisymmetric Lamb wave)

alb=1/2

lexural mode seems to quite resemble to that of the Lamb wave
on the elastic plate with the thickness a (b—x).  So, we have
replotted Fig. 2 by replacing a normalization constant b in both
axes with a as shown in Fig. 4.  In this case, the dispersion
curves of the flexural mode for the different /b values fall
approximately on one curve shown broken in Fig. 4, while the
dispersion curve for the anti-symmetric Lamb wave on the
elastic plate with the thickness a (b—) is shown by the thick-
solid curve.  Thus, both curves seem to be almost coincided
as long as the frequency range shown there, and we can
conclude that the modal-field behavior of the fundamental
flexural mode on the acoustic rectangular waveguides is
understood from that of the Lamb wave mentioned above.
This result is just our new insight for the item (1) mentioned in
Introduction.
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Fig. 2. Dispersion curves of the normalized frequency wb/nv,
versus the normalized phase constant fSb/r, for
different a/b values.
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Both results agree well with the distributions of the
particle displacement of the Lamb wave when b— oo,

Fig. 3.
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Fig. 4. Dispersion curves of the normalized frequency wa/nv,
versus the normalized phase constant PBa/n, for
different o/b values.
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Fig. 5. Sketch of the double-step discontinuity on the acoustic rectangular

waveguide.
from the front side.

3. CHARACTERISTICS OF THE DOUBLE-STEP
DISCONTINUITIES

We next discuss the discontinuity problem on the
acoustic rectangular waveguide on the basis of the knowledge
obtained in the previous section.  Fig. 5 shows the sketch of
the double-step discontinuity, for which the fundamental
flexural mode impinges far from the front end.  The accurate
FEM-calculation results for the reflection and transmission
characteristics are shown in Fig. 6(a) and Fig. 6(b), respectively,
for the different a/b values.  The other dimensional parameters
are shown in the figures.  The thick-solid curve indicates the
results for the double-step discontinuity in uniform plates in the
x direction (g—>o in Fig. 5), but assuming the SH-wave
incidence.  Thus, such a simple 2D-discontinuity model is
completely ineffective to calculate the reflection and transmission
coefficients of the 3D discontinuity for the flexural mode.
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Fig. 6. The reflection (a) and the transmission (b) coefficients versus the normalized frequency wb/mv..
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We assume that the fundamental mode impinges far

This result is just our solution for the item (2) mentioned in
Introduction.  Then, we have a question here: Should we
always use a full-numerical method like FEM to analyze 3D-
discontinuity problems?

As mentioned previously, however, the modal-field
behavior of the fundamental flexural mode on the acoustic
rectangular waveguides is understood from that of the Lamb
wave existing on the elastic plate with the thickness a (b—).
Since the condition of b—oo is equalized with the symmetric
plane placed parallel to the xz plane at any y position, we may
replace both the top and bottom stress-free surfaces in each
waveguide with the symmetric planes. As a result, the
problem of Fig. 5 with the fundamental flexural-mode incidence
is approximated by a 2D-discontinuity probiem of the Lamb-
wave incidence mentioned above.  The results obtained by
such an approximation are shown by the dot-broken curves in
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Fig. 7. Comparison of the reflection (a) and the transmission (b) coefficients between
3D FEM and the approximated 2D-discontinuity model.

Fig. 7, and actually show a good agreement with the accurate
FEM results.  Such an approximated 2D-discontinuity model
can be, of course, solved by not the numerical method like FEM,
but the analytical method, so that the calculation process is
surprisingly simplified. =~ For such an analytical approach, we
can also apply the well-established microwave-circuit analysis
and the equivalent network approach. These will be
presented at the talk. As a result, we don’t know, to our
knowledge, such a successful investigation mentioned here on
the discontinuity problems of the 3D acoustic rectangular
waveguides, and, in this sense, the results and discussions are
quite new, and this is just our solution to the item (3) mentioned
in Introduction.

4. CONCLUSION

Since there is no systematic investigation on the modal-
field behaviors, we have first tried to understand systematically
the modal behavior, especially for the fundamental flexural
mode, in the way similar to the electromagnetic-field theory, and
we have explained it only by that of the Lamb wave, at least, for
the structures discussed here and in the frequency range.
Then these results have been applied to develop a simple 2D-
structural model for solving an actual 3D discontinuity.
Further detail of this approach and application to other acoustic-
device analysis will be presented at the talk.
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